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THE QUESTION OF GRADIENT-FREE HEATING OF PARTICLES IN UNSTEADY

INTENSE PROCESSES

I. T. El'perin and I. F. Pikus
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This paper describes a method of determining the temperature gra-
dient in particles of dispersed material in the case of intense heat
wansfer in heterogeneous systems,

One of the most promising methods of intensifying
transport processes in heterogeneous systems is dis-
persion of the solid phase and the organization of ef-
fective interaction of the phases in the system.
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Fig. 1. Nomogram to determine the
relative temperature drop in the
particle: For Bi equal to 1) 0.1;

2) 0.2; 3) 0.5; 4 1; 5) 2; 6) 4.

The organization of such processes raises the
question of the relative importance and interrelation of
internal and external transport processes. This is
because the simplest hydrodynamic methods of inten-
sification can affect only the external stage of the
transport process (external problem). It is much more
difficult to control the internal transport processes
(internal problem), which usually limit the heat and
mass transfer between the phases of a heterogeneous
system [3, 9].

A very wide range of effects which take place in
heterogeneous systems can be described by a system
of differential equations with boundary conditions of the
third kind, where transport phenomena are expressed
in terms of the laws of convective heat and mass
transfer at the phase interface. The temperature
of the medium and the values of the transport coef-
ficients are assumed to be constant.

In the general case with no mass transfer the solu-
tion to the problem of heating of a sphere with bound-
ary conditions of the third kind has the following form
i1, 2]:

0= tHr, 1)1, _
tm— tﬂ

_ I—ZAn Rsinp,r/R exp (— p2 Fo), a
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where

2Bi V' + (Bi — 1)

o +1
A= 0" BB

An examination of the solution shows that for suf-
ficiently high values of Fo the series rapidly converges
and can be represented with a known degree of ac~
curacy by the first term of the series. As was shown
in [1], in the region of low Bi (<0.1) the rate of heat-
ing of the material is directly proportional to the Biot
number, and the time course of heating is independent
of the thermal inertia of the body and is almost entirely
determined by the conditions of external heat transfer
(external problem). This has led to the published as-
sumption of gradient-free heating of particles in the
case of Bi < 0.1 and relatively high values of Fo.

At low values of Fo the temperature at any point
in the body cannot be determined satisfactorily from
only the first term of the infinite sum contained in Eq.
(1). In view of the computational difficulties arising in
this case Luikov [1, 2] devised an approximate method
of solving the problem. The obtained general solution
has the following form:

BiR 1Fr/R .
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(%) TB—1 {erc Vo exp [(Bi ¥Fo 4
. _t 1Fr/R . —1\)
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Fig. 2. Relationship 6t/ty, —t,) =
=f(Bi, Fo). Curve of constant val-
ues of St/tm — to): 1) 0.02; 2) 0,04;
3) 0.06; 4) 0.08; 5) 0.1; 6) 0. 12;
7) 0.14; 8) 0,16; 9) 0,18; 10) 0, 2;
11) 0.25; 12) 0,3; 13) 0. 4.
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The temperature at the center of the sphere can be
calculated from the following expression:

©, = 2Biexp [(Bi — 1) Fo + (Bi — 1)] X
X erfc (—;—Fo*“’ - (Bi — 1)1/1':?) . (3)

Calculations from Eq. (3) show that in the region of
low Fo (Fo < 0.05) and a fairly wide range of variation
of Bi {0 < Bi < 10) the temperature at the center of
the sphere is practically constant and is equal to the
initial temperature of the body, i.e.,

6= (tc_ to)/(tm“ to):‘:"‘O; tcz—tl)'

Thus, the temperature gradient over the cross section
of the particle in the case of short-term unsteady heat
transfer (Fo < 0.05) with boundary conditions of the
third kind can be evaluated from the change in the sur-
face temperature of the body in the process

to—1, to—t, 81

0, — = = . 4)
) t—1 t— 1

Figure 1 shows curves of variation of the dimension-
less temperature gradient over the cross section of a
sphere for different values of Bi and Fo, calculated
for the considered range of values of Fo from formula
(2) with r/R =1.

As the figure shows, in processes where the heat
is applied for very short periods (in the region Fo <
< 0.05) the relative temperature drop in the body in-
creases steadily with increase in Fo. In other words,
inthe considered conditions the value of 8tAt,, — to) de-
pends not only on the rate of heat transfer from the
surrounding medium to the surface of the body (i.e.,
on Bi), but also on the duration of the process. It is
characteristic that for a particular constant value of
the relative temperature gradient over the cross sec-
tion of the body (the maximum permissible value of
which is prescribed by the technology of the process)

a reduction of Fo leads to a shift of the "limiting"
value of Bi towards higher values. This is clearly
revealed in Fig. 2, which shows the curves of constant
values of the relative temperature drop in the body
plotted in relation to Bi and Fo.

These graphs can be used as nomograms to eval-
uate the relative temperature gradient over the cross
section of the material (for given values of Bi and Fo)
in the case of short-term unsteady heat transfer. In
particular, the obtained graphs can be used to obtain
a reasonably accurate estimate of the error due to the
commonly adopted assumption of gradient-free heating
of particles in intense unsteady processes where the
heat is applied for very short periods as, for instance,
in fluidized- and spouting-bed apparatuses, in counter-
flow systems, and so on. As an illustration we will
carry out a specific calculation of the interphase heat
transfer in a fluidized bed of dispersed material. Heat
transfer between the material and the heat-carrying
gas in homogeneous fluidized systems takes place
almost entirely in an active heat-transfer zone situated
directly above the gas-distributing screen of the ap-
paratus. The mode of heating of the material in the

31

fluidized bed can be represented as follows: Owing to
the vigorous mixing of the solid phase each particle
periodically lands in the "active" heat-transfer zone,
where it receives a certain amount of heat, and is

then carried into the "ballast" zone, where part of its
accumulated heat is transferred to adjacent cooler par-
ticles, and part is "assimilated” by the particle itself.
Thus, heating of a material in a fluidized bed consists
of repeated application of heat for very short periods
to each separate particle.

If we assume in a first approximation that the
temperature of the medium in the "active" heat-trans-
fer zone is constant, the initial temperature distri-
bution in the body on entry into the "active™ zone is
uniform, and the coefficient of interphase heat trans-
fer is constant, then the problem of microperiodic
heating of a particle in a fluidized bed reduces to the
previously considered problem of short-term heating
of a sphere with boundary conditions of the third kind.

As a specific example we will evaluate the relative
temperature drop in glass spheres (d_ = 0.003 m, py =
= 2500 kg/m?, A, =0.742 W/m+ °C, a = 0.0016 m?/hr)
heated in a fluidized bed. We take the temperature of
the heat-transfer medium ast__ = 100° C.

The dimensional velocity of the gas corresponding
to complete fluidization can be determined from the
following formula [4}:

Re;, = 0.036Fe"®.

Hence, for the considered conditions

vy = 1.98m/sec.

The actual coefficient of heat transfer between the air
and particles in a fluidized bed can be calculated from
the following equation [5]:

Nu = 0.316 Re®8,

whence
Qoo = 269 W/m?- C.

We determine the height of the "active" heat-transfer
zone from the formula proposed by Syromyatnikov
and Vasanova [5]:

H, =036 100 2PeR
- a(l—e)
For the adopted conditions
H,,=0.023 m.

The mean absolute velocity of the particles in the fluid-
ized bed can be calculated from the following empirical
formula [6]:

1.08
Fryo® = 4.2.10- AL T (D ) ,
Re d, H,

c

where
-2

Ar - gdi (0 — Pg) . Ff‘, Up

Re Vo, 2,

Taking Hy = 110 mm, Hy/D =1, we obtain

u, = 0.66m/sec.
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Hence, the mean time spent by a particle in the active
heat-transfer zone (in other words, the duration of one
cycle of heating of the particle in the case of repeated
microperiodic application of heat in a fluidized bed)
can be calculated approximately as

T=2 Ha_Z/L_tp = 2.0.023/0.66 = 0.07 sec.

The Fourier number is
" Fo = a1/d? = 0.0016-0.07/(0.003)?-3600 = 0.0035.
The Biot number is

Bi = ad/A, = 269.0.003/0.742 = 1.09.

According to Fig. 2, for the considered case the rela-
tive temperature gradient over the cross section of the
particle is

84t _— 1,)=0.07.

Thus, owing to the specific features of interphase
heat transfer the relative temperature drop in the par-
ticles in the case of heating of a dispersed material in
a fluidized bed is very low even at relatively high Bi
(Bi > 0.1). It should also be noted that as the material
heats up there is a gradual reduction of the absolute
temperature gradient over the cross section of the
particles, since each subsequent cycle of heat transfer
between the considered particle and the gas in the active
zone of the fluidized bed is associated with a continu-
ously decreasing value of the assumed temperature dif-
ference (t_ — ty), which at the limit tends to 0.

Finally, since the time spent by the particle in the
"ballast" zone greatly exceeds the time of active heat
uptake, we can assume that during each of the periods
spent in the ballast zone the temperature distribution
over the cross section of the particle will even out.

Similar conditions occur in other intense, rapid-
flow processes, as in counterflow apparatuses in which
dispersed materials are subjected to repeated heating
and cooling. As calculations showed, the relative
temperature drop in the particles, despite the high
values of the heat transfer coefficient (and, hence, of
Bi) does not exceed 6t/{ty, ~ to) < 0.1 owing to the small
values of Fo in each of the microperiodic cycles of
heating and cooling.

The above method can be used to calculate the
kinetics of heating of a dispersed material in intense
unsteady heating processes involving repeated micro-
periodic application of heat to the material. It can also
be used to choose the optimum process parameters on
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the basis of the maximum permissible from process
considerations) temperature drop in the particles of
the material being processed.

NOTATION

t, tm are the temperatures of material and medium,
respectively; R is the particle radius; v is the filtra-
tion velocity; € is the voidage of fluidized bed; « is the
heat transfer coefficient; A is the thermal conductivity;
a 1s the thermal diffusivity; c_. pg are the specific
heat and density, respectively, of suspending medium;
7 is time; d _is the equivalent particle diameter; Py
is the density of material; v is the kinematic viscosity
of medium; u_ is the mean absolute velocity of parti-
cles in fluidized bed; H, is the height of bed at rest; D
is the diameter of working chamber: Fo, Bi, Ar, Fe,
Re, Nu, Fr_ are the Fourier, Biot, Archimedes, Fe-
dorov, Reynolds, Nusselt, and modified Froude num-
bers.
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